The main findings of this study are (a) it is feasible to convert the edus2 software into an HTML browser-based application, (b) this—in combination with a mock US probe—makes ultrasound training and simulation affordable in developing countries, since (c) our software solution may be used on any operating system (Mac OS®, Android, WINDOWS®, etc.) and on any gadget available (smartphone, tablet, PC, etc.).
Considering the capabilities of our readily available ultrasound simulator at only a fraction of the cost of commercially available solutions, it might be especially relevant for medical education and training in developing countries. These can be remote environments or poor areas in the developing world with a lack of imaging modalities other than ultrasound [8–12]. Of note, acute surges in availability of imaging services can also occur in developed healthcare systems, with emergency ultrasound filling the gap. An impressive illustration of this is the report from the Boston bombings, where POC-US significantly aided in the management of mass casualties [13].
The high adaptability of the system allows for customization according to the requirements of the respective teaching facility. If there is no opportunity to acquire video material by oneself, there are several freely accessible video libraries for this purpose [14].
Due to its low cost and independence of hardware solutions, our simulator allows to be employed for blended learning in our own medical school in a broad manner, which has the potential to spare time and resource. Learners can not only prepare themselves with conventional e-learning material, but also train more aspects of image acquisition, with a unique haptic experience. The latter very much adds to the imaging skills, compared to the sole use of screen-based training choosing videos on the displaying device manually [5]. Given the steep learning curves, quite specific for POC-US, a rapid translation of the clinical skills augmented by such training efforts into clinical routine may be expected [15–17].
When using QR Codes™ as triggers, which can be downloaded and printed out, no additional hardware, i.e., sets of RFID or NFC tags, has to be distributed. Thus, the system can remotely be made available for download. Some minor technical details are subject to our further investigation and development, such as the design of the application surface. Furthermore, strategies for accurate review and quality control of the teaching material have to be implemented. Programming and indexing tags with their corresponding video clips may be time consuming, as it is for any ultrasound video loop editing for educational purposes. As some mobile devices failed to feed battery power to the RFID antennas, the capability of using different triggering solutions provides a useful backup plan. Finally, the sole triggering of a video clip to be displayed does not encompass probe manipulation and image optimization skills as commercially available systems do, which is another field of further technical development for the system. Furthermore, the video output format of ultrasound machines and the anonymizing function varies. Several different file types and codecs may hamper their universal utilization for an ultrasound simulation library. This can easily be overcome using free file converters. Altogether, despite some minor technical issues, we did not want to withhold this important technical advance from publication, since we are convinced, that it will have a considerable impact on worldwide training in POC-US.