Patients with massive pulmonary embolism usually have both right ventricular and right atrial pressure overload with pulmonic and tricuspid regurgitation with most patients being tachycardic and hypotensive [1–15]. At the patient’s bedside in the ED, we were able to directly visualize an occlusive thrombus in the patient’s right pulmonary artery using the parasternal short-axis RVOT view. ED physician performed bedside echocardiography which was a very useful tool to allow us to expedite medical therapy and obtain early ED surgical consultation. Although our patient was tachycardic and very dyspneic in the ED, she remained alert and normotensive during most of her ED course. In the ED, however, she decompensated and became hypotensive requiring an intravenous fluid bolus with her blood pressure normalizing prior to medical intensive care unit transfer.
ED cardiology physicians have reported direct visualization of thrombus in the pulmonary artery using bedside transthoracic echocardiography specifically using the parasternal short-axis RVOT view [5–7]. Madan et al. [6] demonstrated a directly visualized decrease in the amount of pulmonary artery thrombus after intravenous tissue plasminogen activator administration. Emergency physicians have reported indirect bedside echocardiography signs of submassive or massive pulmonary embolism such as right ventricle enlargement, a flattened intraventricular septum in both systole and diastole, McConnell sign and tricuspid regurgitation, with no direct visualization of a pulmonary artery thrombus [4, 8, 9]. In our patient, we were able to directly visualize an occlusive thrombus in the right main pulmonary artery in the RVOT view using ED bedside echocardiography (Fig. 8 and Video Clip S6).
Indirect bedside echocardiography signs of massive or submassive acute pulmonary embolism include: the McConnell sign of right ventricular mid-segment dilation with normal apical contractility, tricuspid and pulmonic regurgitation with elevated RVSP and RV pressure overload, pulmonary hypertension, D-shaped left ventricle with a flattened intraventricular septum during the entire cardiac cycle, right atrial thrombus, decreased tissue Doppler S-wave in the apical four chamber RV lateral basal wall view, and hepatic vein pulse wave Doppler systolic reversal and biphasic hepatic vein blood flow due to tricuspid regurgitation [1–13]. Our patient demonstrated all of these indirect signs of massive pulmonary embolism yet the direct visualization of the thrombus in the pulmonary artery with ED bedside echocardiography was the most clinically diagnostic and useful as chronic conditions such as chronic pulmonary hypertension with resulting RV hypertrophy may also result in RV strain.
Patients with RV infarction can have a positive McConnell sign and Casazza et al. [11] have reported that the McConnell sign is only 33% specific for pulmonary embolism. They noted, however, that continuous wave Doppler helps differentiate RV infarction from submassive pulmonary embolism by demonstrating an increased tricuspid regurgitation right atrial to right ventricle pressure gradient in submassive pulmonary embolism yet a normal gradient in RV infarction [11]. Both RV infarction and massive pulmonary embolism will have a decreased lateral RV apical four chamber tissue Doppler S-wave velocity and less than 10 cm/s is considered abnormal [12]. Our patient had a right ventricular tissue Doppler S-wave velocity of 8.93 cm/s confirming RV pressure overload with decreased RV systolic function. Patients with acute massive pulmonary embolism and right atrial pressure overload can have a dilated right ventricle with tricuspid regurgitation, elevated right ventricular systolic pressure which is an estimate of pulmonary artery systolic pressure. We estimated our patients RVSP to be 73.7 mmHg and the formal Cardiology RVSP estimation was 75 mmHg, both measurements indicating RV pressure overload. When estimating right atrial pressure with IVC collapse, Randazzo et al. [16] has reported fair-to-moderate interrater reliability (kappa of 0.41) of cardiologist performed versus emergency physician performed echocardiography evaluation of IVC inspiratory collapse in non-intubated patients to estimate central venous pressure. We also measured our patient’s most vertical hepatic vein with pulse Doppler revealing systolic reversal and biphasic hepatic vein Doppler waves (Fig. 11). This hepatic vein Doppler signal is usually the result of a combination of tricuspid regurgitation and decreased right ventricular systolic function, as our patient had a decreased lateral wall RV tissue Doppler velocity, less than 10 cm/s [13].
Burnside et al. [17] in their systematic review of pooled data from six articles and 936 patients suggest that emergency physician-performed ultrasonography for the diagnosis and exclusion of deep venous thrombosis compared to Radiology-performed ultrasonography imaging may be accurate with overall sensitivity of 95% (95% CI = 87–99%) and overall specificity of 96% (95% CI = 87–99%). Our ED bedside diagnosis of a right popliteal deep venous thrombosis was confirmed by a formal Radiology study and Vascular surgery consultation was initiated to evaluate for possible inferior vena cava filter placement.
The prognosis of a patient with a submassive or massive pulmonary embolism and a right atrial or right ventricle thrombus is markedly decreased [14, 15]. Patients who have a large thrombus in their pulmonary artery and thrombus in either the right atrium or right ventricle are at risk for rapid hemodynamic decline and they may need medical thrombolytic therapy or surgical thrombus removal [14, 15]. We were able to visualize thrombus in our patient’s pulmonary artery and right atrium. Cardiothoracic surgery was consulted early, while the patient was still in the ED.
The supplemental video clips illustrate how ED bedside echocardiography can assist the emergency physician in the diagnosis of massive pulmonary embolism with both direct visualization of thrombus in the pulmonary artery and with examining indirect signs of RV pressure overload.
Advanced bedside echocardiography evaluation of patients for massive pulmonary embolism with direct thrombus visualization in the pulmonary artery and right ventricular pressure overload is an operator-dependant modality, and emergency and critical care physician’s screening-advanced echocardiography should always be followed by formal cardiology echocardiography examination.