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Abstract
Background Ultrasound can detect fluid in the alveolar and interstitial spaces of the lung using the presence of 
artifacts known as B-lines. The aim of this study was to determine whether a deep learning algorithm generated B-line 
severity score correlated with pulmonary congestion and disease severity based on clinical assessment (as identified 
by composite congestion score and Rothman index) and to evaluate changes in the score with treatment. Patients 
suspected of congestive heart failure underwent daily ultrasonography. Eight lung zones (right and left anterior/
lateral and superior/inferior) were scanned using a tablet ultrasound system with a phased-array probe. Mixed effects 
modeling explored the association between average B-line score and the composite congestion score, and average 
B-line score and Rothman index, respectively. Covariates tested included patient and exam level data (sex, age, 
presence of selected comorbidities, baseline sodium and hemoglobin, creatinine, vital signs, oxygen delivery amount 
and delivery method, diuretic dose).

Results Analysis included 110 unique subjects (3379 clips). B-line severity score was significantly associated with the 
composite congestion score, with a coefficient of 0.7 (95% CI 0.1–1.2 p = 0.02), but was not significantly associated 
with the Rothman index.

Conclusions Use of this technology may allow clinicians with limited ultrasound experience to determine an 
objective measure of B-line burden.
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Background
Thoracic ultrasound has emerged as a vital tool in assess-
ing hospitalized patients experiencing shortness of 
breath, particularly in the initial evaluation within the 
Emergency Department (ED) [1–4]. Lung ultrasound, in 
particular, can detect alveolar interstitial syndrome (AIS), 
indicating the presence of fluid in the lung alveolar and 
interstitial spaces. AIS is characterized by the appearance 
of “B-lines”, ring-down artifactsextending from the pleu-
ral line to the bottom of the screen thatmove with respi-
ration [5–7].

B-lines can be seen in several different conditions such 
as pulmonary edema in acute heart failure (HF), pneu-
monia, pulmonary embolus, end stage renal disease with 
volume overload, acute respiratory distress syndrome, 
and COVID-19 [4, 7–15]. The quantity and morphology 
of B-lines correlate with the amount of interstitial fluid 
present and loss of lung aeration [16, 17]. AIS severity 
can be a prognostic factor in heart failure and renal fail-
ure [18–20]. B-line severity in critically ill patients has 
been found to be predictive of mortality, length of stay 
and time on the ventilator [21]. However, B-line identifi-
cation and quantification can vary based on user experi-
ence [22–24].

Leveraging machine learning, specifically artificial 
intelligence (AI) based quantification methods, may 
improve diagnosis when properly employed [25–27]. 
AI algorithms, especially those created using deep neu-
ral networks (deep learning), are increasingly utilized 
in medical research to generate substantial amounts of 
data for large scale projects [21, 28]. Employing AI to 
rate B-line severity allows for rapid processing of siz-
able datasets and increases feasibility of large-scale 
research studies. Automated interpretation may also 
allow more reproducible measures of B-line severity and 
could potentially be obtained by users with less experi-
ence in ultrasound (e.g. a nurse monitoring progress of a 
patient with pulmonary edema) and may enhance ultra-
sound utility in low resource settings. Employing AI in 
healthcare settings can refine cardiac disease evaluation, 
enhancing accuracy, efficiency, and personalized care, 
ultimately improving patient outcomes and resource allo-
cation [29, 30].

While some studies have shown dynamic changes in 
B-line severity with response to treatment, fewer have 
examined B-line severity evolution over the treatment 
course and correlation with symptomatology or sever-
ity indicators, particularly in inpatient settings [18, 19, 
31]. Changes in B-line severity are anticipated to paral-
lel the clinical trajectory, potentially serving as an addi-
tional indicator of inpatient treatment advancement and 
efficacy. Illness severity categorization can offer valu-
able insights across various clinical scenarios and guide 
medical decision-making. Illness severity scores typically 

gauge the extent of illness and mirror the intricacies of 
the disease progression but are also used for predictive 
and comparative outcome assessment, resource alloca-
tion, and care process evaluation [32]. Examples include 
Modified Early Warning Score, Acute Physiology and 
Chronic Health Evaluation, Rothman index, and others 
[33–35]. At present, there is no established standardized 
score for evaluating severity during admissions for heart 
failure, making the assessment of clinical severity com-
plex [36]. While congestion is primarily diagnosed clini-
cally, a composite congestion score has been outlined to 
track the advancement of congestive signs and symptoms 
in response to standard therapy in heart failure [37]. Less 
is known about how B-line severity correlates with scores 
of illness severity categorization and if B-line severity 
may augment this assessment.

The aim of this study was to determine the association 
between a deep-learning generated B-Line severity score 
and the degree of pulmonary congestion severity based 
on clinical assessment without ultrasound (via compos-
ite congestion score) and overall illness severity (based 
on Rothman index) in patients with suspicion of heart 
failure induced pulmonary edema, and its changes in 
response to inpatient treatment.

Methods
Study design
This was a prospective, observational study conducted 
at a large academic medical center between July 2018 
and May 2019. Subjects included adult English-speak-
ing patients who presented to the Emergency Depart-
ment (ED) with dyspnea and/or hypoxia, were triaged 
to the high acuity section of the ED, displayed B-lines 
on an initial screening ultrasound, and had a diagnosis 
of heart failure or pulmonary edema upon admission or 
discharge. Additionally, subjects admitted to the heart 
failure floor with a diagnosis of pulmonary edema or 
heart failure were enrolled as a supplemental cohort. The 
study was approved by local institutional review board. 
All patients meeting inclusion criteria were approached 
for enrollment consecutively during defined periods and 
invited to participate.

Subject and exam-level data collection
The study collected subject demographic information 
such as age, gender, race, and ethnicity, alongside various 
clinical parameters recorded at the time of each study 
ultrasound. These included vital signs, oxygen delivery 
method, fraction of inspired oxygen (FiO2), patient posi-
tion (bed angle), recent laboratory results (troponin I, 
troponin T, N-terminal pro b-type natriuretic peptide), 
radiological imaging results (chest X-ray, lung com-
puter tomography, transthoracic echocardiograms), and 
medications relevant to heart failure and pulmonary 
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edema (type and dosage of diuretics, type and dosage of 
vasodilators).

Additionally, clinical data such as fluid intake and 
output for the 24  h before the ultrasound were docu-
mented. Intravenous and oral loop diuretic dosages were 
converted to intravenous furosemide equivalents [38]. 
Percent FiO2 was estimated by converting the flow rate 
into an approximate percentage. For example, two liters 
of oxygen via nasal cannula was considered 24% FiO2, 
increasing by 4% per liter up to six liters. Non-rebreather 
masks or high-flow nasal cannulas were approximated 
as 90% FiO2. Charted FiO2 was recorded for ventilated 
patients. Subjects were classified as having a diagnosis of 
heart failure or pulmonary edema based on the presence 
of either diagnosis in their recorded admission or dis-
charge diagnoses. In cases where this was unclear (non-
specific diagnoses such as shortness of breath, dyspnea, 
acute respiratory failure, etc.), electronic medical records 
were reviewed by a blinded author to determine the diag-
nosis, independent of B-line severity.A Composite Con-
gestion Score (CCS) was calculated for each subject at 
the time of each research ultrasound. Dyspnea, fatigue, 
orthopnea, jugular venous distension, rales, and pedal 
edema were evaluated and documented prospectively by 
the research assistant using a standardized 4-point scale 
(Table 1) [37]. The points were then aggregated to deter-
mine the final CCS, a metric previously outlined in the 
EVEREST trial [37].

Additionally, the Rothman index was also collected as 
a potential indicator of overall illness severity [33]. The 
study recorded admission and discharge diagnoses of the 
subjects. Readmission events and survival status were 
monitored for six months from the initial enrollment 
date. Lung ultrasound clips, clinical parameters, Roth-
man index and CCS were collected daily until either dis-
charge or the 10th day of hospitalization. Data collection 
was timed as close to 24-hour intervals as possible.

Lung ultrasound examinations
Hospitalized subjects underwent daily 8-zone lung 
ultrasound examinations during their inpatient stay. 
Lung ultrasound exams were performed by a trained 
research assistant using a Philips Lumify S4-1 phased 

array transducer with depth set to 15 cm. Recordings of 
three-second clips were obtained from 8 distinct lung 
zones (right and left anterior superior, anterior infe-
rior, lateral superior, and lateral inferior, Fig.  1) while 
the patient assumed a comfortable position, typically at 
approximately a 45-degree angle. For subjects enrolled in 
the Emergency Department (ED), ultrasound scans were 
repeated once on the day of enrollment, with a time gap 
of 2 to 5 h if the patient remained in the ED. If significant 
events like positive pressure ventilation, nitroglycerin 
drip, or diuretic administration occurred during the ED 
stay, and the patient was ready for transfer to an inpatient 
floor within 2 h, the scan was repeated sooner, 1–2 h later 
i. Clips were de-identified using ClipDeidentifier (www.
ultrasoundoftheweek.com) for MP4 format, and DICOM 
Cleaner (PixelMed Publishing™) for DICOM format.

Deep-learning generated B-line score
B-line severity in each video loop was assessed using a 
modified version of a previously published deep learning 
algorithm, which rates the severity of B-lines on a scale 
from 0 to 4 [28, 39].

A total of 838 exams were conducted on 253 subjects, 
resulting in a dataset of 6,604 clips (video loops). Each 
video loop contained approximately 90 frames (30 frames 
per second). Clips that were unreadable DICOM files, 
mislabeled data, and those used for algorithm retuning 
(as described in the prior publication utilizing the same 
large dataset), were excluded [28]. Further excluded were 
exams with clips from less than 6 zones, exams from 
subjects discharged after ED evaluation, those lack-
ing outcomes or model covariates available for person-
day, and subjects without a diagnosis of heart failure or 

Table 1 Composite congestion score (scale for investigator-
assessed signs and symptoms of congestion) [37]
Signs/symptoms 0 1 2 3
Dyspnea None Seldom Frequent Continuous
Orthopnoea None Seldom Frequent Continuous
Fatigue None Seldom Frequent Continuous
JVD (cm H2O) ≤ 6 6–9 10–15 ≥ 15
Rales None Bases To < 50% To > 50%
Edema Absent/trace Slight Moderate Marked
JVD, jugular venous distension

Fig. 1 Location of ultrasound interrogation of thorax for B-line presence 
and quantity: right anterior superior (RAS), right anterior inferior (RAI), right 
lateral superior (RLS), right lateral inferior (RLI), left anterior superior (LAS), 
left anterior inferior (LAI), left lateral superior (LLS) and left lateral inferior 
(LLI)
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pulmonary edema (Fig. 2). Final dataset contained 3379 
clips from 110 subjects.

Statistical analyses
A multi-level mixed effects modeling approach was 
employed to explore the association between B-lines 
and clinical severity over time. This modeling tech-
nique allows for grouping patients to consider individ-
ual variations when dealing with longitudinal data that 
includes multiple measurements per patient [40]. The 
study evaluated the associations between these covari-
ates and the deep-learning generated B-line score with 
either CCS or Rothman index. Candidate covariates 

encompassed demographic and clinical characteristics 
selected via clinician gestalt, excluding those with over 
30% missing data (N-terminal pro-brain natriuretic pep-
tide and intake-output). Reverse stepwise selection was 
used for model creation and eliminated the least signifi-
cantly associated covariates with a stopping threshold of 
p = 0.05. Variable inflation factor was calculated to rule 
out for multi-collinearity among the final model covari-
ates. No data imputation or replacement for missing data 
was performed. Days with missing data, either clinical or 
all 8-zone scores, were excluded from the analyses. All 
statistical analyses were performed using Stata (v.15.1, 
College Station, TX).

Fig. 2 Flow diagram of enrollment and clips utilized in the study
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Results
The primary study cohort, comprising 110 subjects (423 
patient-days, 3379 clips), was analyzed to explore the 
association between clinical severity (represented by 
CCS and Rothman index) and deep-learning generated 

B-line severity The average age of subjects was 72 years 
old (±13 years), and 45% were female (Table 2). The aver-
age 8-zone B-line score over hospitalization duration was 
down trending, as displayed in Fig. 3a.

A weak unadjusted association was observed between 
composite congestion score and deep-learning generated 
B-line severity (Fig. 3b). Adjustment via the mixed effects 
regression model demonstrated a statistically significant 
association between the deep-learning generated B-line 
score and CCS, with a coefficient 0.7 (95% CI 0.1 to 1.2, 
p = 0.02, Table  3). The other covariates included in the 
final model were total loop diuretic dose on day of exam, 
respiratory rate, baseline hemoglobin and sodium, FiO2, 
and lack of supplemental oxygen delivery (room air oxy-
gen delivery type).

There was no significant association between Roth-
man index and deep-learning generated B-line severity in 
either unadjusted or adjusted analyses (Table 4).

Discussion
This study contributes to the body of evidence indicating 
that B-lines are dynamic artifacts, and that B-line severity 
decreases over time as congestion symptoms decrease. 
We have demonstrated that an AI scoring system devel-
oped using deep learning correlates with changes in clini-
cal severity of pulmonary congestion. AI generated B-line 

Table 2 Patient characteristics
N (%) or Mean (SD) Cohort of patients 

with heart failure/
pulmonary edema
N = 110

Demographics/Enrollment
 Age 71.8 (12.9)
 Female 49 (44.5)
 Location of enrollment (ED) 64 (58.2)
Vital Signs
 Heart Rate 80.1 (17.6)
 Systolic Blood Pressure 126.8 (22.1)
 Diastolic Blood Pressure 70.1 (15.1)
 Respiratory Rate 19.2 (2.4)
O2 Delivery Type
 Nasal cannula 55 (50.0)
 Room air 53 (48.1)
 Other 2 (1.8)
FiO2 27.9 (12.1)
Baseline Lab studies
 Sodium 138.9 (4.5)
 Hemoglobin 11.4 (2.4)
 NT-ProBNP 9028.1 (13894.6)
 Creatinine 1.7 (1.1)
Diuretic Type
 Combination 15 (13.6)
 Loop Only 78 (70.9)
 None 16 (14.5)
Diuretic Dose 99.5 (120.7)
Findings/Outcomes
 Baseline Composite Congestion Score 8.7 (3.2)
 Baseline Rothman Score 61.1 (15.4)
 Readmission (non-procedural) within 90 days 44 (40%)

Table 3 Mixed effects modeling investigating association 
between composite congestion score and B-line severity
Composite Congestion Score Coefficient 95% CI
B-line severity AI Rating 0.7 0.1 to 1.2
Exam Day (1–7) -0.6 -0.7 to -0.5
Total loop diuretic dose 0.001 -0.001 to 0.002
Respiratory Rate 0.1 -0.02 to 0.16
Baseline Hemoglobin -0.3 -0.5 to -0.1
O2 delivery type: room air -2.4 -3.1 to -1.7
FiO2 -0.02 -0.06 to 0.02
Baseline Sodium -0.1 -0.2 to -0.03

Fig. 3 a Eight-zone average daily B-line score trendline over hospitalization days. b B-line score and Composite Congestion score trendlines
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severity in our study was significantly associated with 
symptom burden as measured by CCS, though not asso-
ciated with the Rothman index.

The decision to use CCS was informed by a study by 
Ambrosy et al., which investigated the progression of 
congestive signs and symptoms in response to standard 
therapy in a large contemporary cohort of patients hospi-
talized for worsening heart failure with reduced ejection 
fraction [37]. The study showed significant improve-
ment in CCS distribution from baseline to discharge, 
with a simultaneous reduction in CCS correlating with 
sustained body weight loss [37]. Patients with higher 
CCS were also more frequently categorized as New York 
Heart Association functional class IV [37]. These findings 
collectively support CCS as a marker of heart failure-
induced pulmonary congestion.

Although the link between CCS and B-line severity 
displayed statistical significance, the estimate’s confi-
dence interval is broad, suggesting a potentially weak 
clinical association. This may be because of some exist-
ing mismatch between congestion and B-line severity 
[41, 42]. B-lines have been found to persist at discharge 
despite lack of symptoms and clinical exam improve-
ment: approximately 40% of patients with no rales show 
subclinical congestion with five or more B-lines on ultra-
sound at hospital discharge [43]. Additionally, in patients 
with renal failure, B-lines are found on ultrasound despite 
lack of pulmonary symptoms [20].

Another potential reason for the lack of strength of 
the association between CCS and B-line severity is that 
our study does not compare B-line severity with a fully 
objective assessment of clinical severity, as the CCS is 
partly based on symptom burden. At present, there is no 
established standardized and objective method for evalu-
ating congestion in heart failure, making the assessment 
of clinical severity complex [36]. While chart review 
could have been used to assess clinical severity, conduct-
ing a daily severity review for the entire study patient 

population would have been highly resource-intensive 
for the study, and it is likely that retrospective capture of 
variables would yield incomplete and potentially inaccu-
rate results.

The Rothman Index (RI, PeraHealth, Inc. Charlotte, 
NC, USA), an illness severity predictive model which uses 
continuous measurements of patient data from 26 non-
static variables to measure physiologic acuity, was incor-
porated as a more objective comparator [33, 44]. This 
score is derived from vital signs, nursing assessments, 
laboratory findings, and cardiac rhythm, and is computed 
by assessing deviations from standard values, with a max-
imum score of 100 representing conformity to standard 
values. A decline in score corresponds to a deteriora-
tion in patient health. Designed to be applicable across 
patients regardless of diagnosis, procedure, or setting, 
the Rothman Index aims to offer healthcare providers a 
measurable, ongoing assessment of a patient’s clinical 
condition automatically generated by the electronic med-
ical record [33]. However, the Rothman index does con-
sider nursing reports, which can be subjective. Our study 
found no significant association between B-line severity 
and the Rothman Index. One would expect an inverse 
relationship if patients were improving, but the lack of 
association may not be entirely surprising since the Roth-
man Index is designed to predict patient deterioration, 
not illness severity per se [33]. Unlike other early warning 
systems like National Early Warning Score, the Rothman 
Index relies on a larger number of data inputs, but these 
data points are given equal weight, potentially causing 
fluctuations in one variable to offset changes in another 
[33, 45]. Noise that may be introduced by additional 
data inputs would cancel out signal from the most criti-
cal variables. One rationale for selecting the Rothman 
index compared to other measures was its widespread 
utilization as a clinical severity metric within the medical 
center where the study was conducted, thus ensuring its 
availability for all patients. Such a score would be readily 
available to entire medical team easily by review of elec-
tronic medical record.

While we attempted to use available tools such as the 
CCS and Rothman Index, it should be understood that 
there is really no agreed upon gold standard, particularly 
one that is readily obtainable, to objectively quantify pul-
monary congestion. It is conceivable that an ultrasound 
measure of pulmonary congestion, particularly one that 
is more objectively determined using AI, may ultimately 
outperform these existing imperfect and subjective 
measures.

Another limitation of the study was inclusion criteria 
of patients with undifferentiated dyspnea “suspected” of 
heart failure, alongside an admitted heart failure cohort, 
which resulted in some diagnostic variability. Fisease 
processes other than CHF and pulmonary edema cause 

Table 4 Mixed effects modeling investigating association 
between Rothman Index and B-line severity
Rothman Index Coefficient 95% CI
B-line severity AI Rating -0.5 -2.5 to 1.6
Exam Day -0.2 -0.7 to 0.3
Comorbidity – Afib -3.2 -7.3 to 0.9
Comorbidity – COPD -3.8 -8.7 to 1.1
Age -0.1 -10.9 to -2.3
Female (vs. Male) -6.6 -0.2 to 2.0
Total Loop Diuretic Dose -0.004 -0.01 to 0.003
Diastolic blood pressure 0.09 0.004 to 0.17
Respiratory Rate -0.8 -1.2 to -0.5
Baseline sodium 0.5 0.02 to 1.0
Baseline hemoglobin 1.4 0.5 to 2.2
FiO2 -0.1 -0.2 to 0.03
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B-lines. Although most subjects ultimately received a dis-
charge diagnosis of heart failure and pulmonary edema 
(pathologies associated with B-lines expected to improve 
over time), this may not have been true of patients who 
did not have CHF, or exhibited dual-diagnoses. For 
instance, a patient with lung cancer would be expected to 
have persistent lung findings despite their clinical course 
during a hospitalization, potentially biasing the results. 
To address this, we specifically enrolled patients with 
suspicion of heart failure and focused on evaluating the 
cohort with confirmed heart failure/pulmonary edema 
diagnoses to minimize the impact of this limitation in 
our analysis, but future studies could have stricter enroll-
ment criteria and exclusion of other diagnoses causing 
fluid overload.

In patients with hypervolemia due to acute decompen-
sated heart failure, lung ultrasound has improved sen-
sitivity and specificity compared to chest x-ray (CXR) 
for pulmonary edema and pleural effusions [46–48]. In 
some settings, daily CXRs are common for monitoring, 
which can involve logistical challenges such as patient 
transport, costs, delays in interpretation, and radiation 
exposure [49]. In our study, B-line severity showed an 
independent association regardless of oxygenation needs 
and radiology results. Lung ultrasound offers a promising 
alternative to CXR as it is radiation sparing and can be 
conducted promptly at the bedside, potentially by a vari-
ety of staff members with the assistance of AI.

Using a deep-learning generated B-line score, we were 
able to use multi-level mixed effects modeling to test 
association of over twenty candidate covariates with CCS 
on this large dataset. Manual expert B-line scoring of 
> 3000 clips would have been impractical. In addition to 
AI assisted research dataset processing, AI-assisted lung 
ultrasound for real-time B-line severity assessment dur-
ing hospitalization or at discharge potentially holds clini-
cal benefits. Presence of B-lines at hospital discharge of 
patients with heart failure indicates a five-fold increased 
risk for readmission or death, and presence of B-lines 
predicts a four-fold risk for hospitalization or death for 
ambulatory chronic heart failure patients [19, 50]. B-lines 
outperform ejection fraction as predictors for death, 
myocardial infarction, and heart failure progression [51, 
52]. This important predictive data maymerit a different 
follow-up approach than similar patients without signifi-
cant B-line burden and would be important information 
to have during a hospital admission [53]. Tracking B-line 
severity during hospitalization could be especially valu-
able for critically ill populations or those unable to com-
municate their symptoms. AI aids non-expert clinicians 
in obtaining and interpreting lung ultrasound data, and 
AI-based risk prediction models integrating clinical and 
imaging variables offer personalized assessments for 

heart failure management, supporting treatment deci-
sion-making [30, 54].

Conclusions
Our AI scoring system for B-line severity, generated via 
deep learning algorithm interpretation of lung ultra-
sound, was significantly associated with the composite 
congestion score. Use of this technology may allow clini-
cians with limited ultrasound experience to determine an 
objective measure of B-line burden. Further prospective 
testing of automated B-line assessment into diagnosis, 
prognosis, and therapy is warranted.

Abbreviations
AI  Artificial Intelligence
CCS  Composite Congestion Score
FiO2  Fraction of inspired oxygen
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